Ç	Question		Answer	Marks	Guidance		
1	(i)		v = 0 when it arrives				
			$150\ 000(t - \frac{1}{4}t^2) = 0$	B1	Award this mark for substituting $t = 4$ to obtain $v = 0$		
			$\Rightarrow t = 4 \text{ (on arrival)}$		Condone omission of $t = 0$		
				[1]			
	(ii)		Distance travelled $s = \int v dt$	M1	Do not accept multiplication by t.		
			$s = 150 \ 000 \left[\frac{1}{2} t^2 - \frac{1}{12} t^3 \right] \ (+c)$	A1			
			When $t = 4$, $s = 400 000$	M1	Substituting their $t = 4$. This mark is dependent on the previous M mark.		
			The journey is 400 000 km	A1	If 400 000 seen award the previous mark		
				[4]			
	(iii)		For maximum speed $a = \frac{dv}{dt} = 0$				
			$\frac{dv}{dt} = 150\ 000(1 - \frac{1}{2}t)$				
			$\Rightarrow t = 2$	B1	t = 2 seen		
					Accept a trial and error method		
			$v = 150\ 000(2 - \frac{1}{4} \times 2^2) = 150\ 000$				
			Maximum speed is 150 000 km h ⁻¹	B1	CAO		
				[2]			

	Questi	on	Answer	Marks	Guidance
2	(i)		$\mathbf{p} \qquad \sqrt{(-1)^2 + (-1)^2 + 5^2} = \sqrt{27}$ $\mathbf{q} \qquad \sqrt{(-1)^2 + (-4)^2 + 2^2} = \sqrt{21}$	M1	Use of Pythagoras
			$\mathbf{q} \qquad \sqrt{(-1)^{2} + (-4)^{2} + 2^{2}} = \sqrt{21}$ $\mathbf{r} \qquad \sqrt{2^{2} + 5^{2} + 0^{2}} = \sqrt{29}$		Note Magnitudes are 5.196, 4.583 and 5.385 respectively
			Greatest magnitude: r	A1	
				[2]	
	(ii)		Weight $= \begin{pmatrix} 0 \\ 0 \\ -4 \end{pmatrix}$	В1	Condone $g = 9.8$ giving weight is $\begin{pmatrix} 0 \\ 0 \\ -3.92 \end{pmatrix}$ N. Accept $4 \downarrow$.
			$\mathbf{p} + \mathbf{q} + \mathbf{r} + \mathbf{weight} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$		$g = 9.8 \text{ gives } \begin{pmatrix} 0 \\ 0 \\ 3.08 \end{pmatrix}$
			$0.4\mathbf{a} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$	B1	Relevant attempt at Newton's 2^{nd} Law. The total force must be expressed as a vector in some form. For this mark allow the weight to be missing, in the wrong component or to have the wrong sign. Condone mg in place of m for this mark only.
			Magnitude of acceleration is 7.5 m s ⁻²	B1	CAO apart from using $g = 9.8 \implies a = 7.7$
			Direction is vertically upwards	B1	
				[4]	

	Question	n Answer	Marks	Guidance
3		Equate i and j components of v	M1	The candidate recognises that the i and j components must be equal.
		$16 - t^2 = 31 - 8t$	A1	An equation is formed.
		$t^2 - 8t + 15 = 0$		
		(t-3)(t-5)=0		
		t = 3 or 5	A1	May be implied by later working.
		When $t = 3$, $\mathbf{v} = 7\mathbf{i} + 7\mathbf{j}$	В1	
		Speed when $t = 3$ is $7\sqrt{2} = 9.9 \text{ m s}^{-1}$	B1	
		The values of the i and j components must both be positive for the bearing to be 045° .	В1	This mark is dependent on obtaining A1 for the result $t = 3$ or 5. It is awarded if the speed for the case when $t = 5$ is not included (since $t = 5 \implies \mathbf{v} = -9\mathbf{i} - 9\mathbf{j}$ and the bearing is 225°).
				Note Candidates who obtain r and equate the east and north components should be awarded SC1 for the whole question.
			[6]	

Questio	n Answer	Marks	Guidance
3	Alternative Trial and error		
	The i and j components of v must be equal	M1	The candidate recognises that the i and j components must be equal.
	The i and j components of v must both be positive for the bearing to be 045°.	B1	This can be demonstrated during the question either by a suitable convincing diagram including 45°, or by a suitable convincing argument
	At least one value of <i>t</i> is substituted	A1	Trial and error is used
	t=3	A1	t = 3 is found by trial and error
	When $t = 3$, $\mathbf{v} = 7\mathbf{i} + 7\mathbf{j}$	B1	
	Speed when $t = 3$ is $7\sqrt{2} = 9.9 \text{ m s}^{-1}$	B1	
			Note Candidates who obtain r and equate the east and north components should be awarded SC1 for the whole question.
		[6]	

4		mark	notes
	Fither using quart		Column vectors may be used throughout; lose 1 mark once if \mathbf{j} components put at top or if fraction line included. Notation used must be clear.
(i)	Either using suvat: Use of $\mathbf{v} = \mathbf{u} + t\mathbf{a}$ $\mathbf{v} = 4\mathbf{i} - 2t\mathbf{j}$ Use of $\mathbf{r} = (\mathbf{r}_0 +) t\mathbf{u} + \frac{1}{2} t^2\mathbf{a}$ $+ 3\mathbf{j}$ $\mathbf{r} = 4t\mathbf{i} + (3 - t^2)\mathbf{j}$	M1 A1 M1 B1 A1	substitution required. Must be vectors. substitution required. \mathbf{r}_0 not required. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r} = 3\mathbf{j} + 4t\mathbf{i} - \frac{1}{2} \times 2 \times t^2 \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12c in marking instructions)
	Or using integration: $\mathbf{v} = \int \mathbf{a} dt$ $\mathbf{v} = 4\mathbf{i} - 2t\mathbf{j}$ $\mathbf{r} = \int \mathbf{v} dt$ $+ 3\mathbf{j}$ $\mathbf{r} = 4t\mathbf{i} + (3 - t^2)\mathbf{j}$	M1 A1 M1 B1 A1	Attempt at integration. Condone no '+ \mathbf{c} '. Must be vectors. cao Integrate their \mathbf{v} but must contain 2 components. Must be vectors. May be seen on either side of a meaningful equation for \mathbf{r} Accept $\mathbf{r} = 3\mathbf{j} + 4t\mathbf{i} - \frac{1}{2} \times 2 \times t^2 \mathbf{j}$ oe written in a correct notation. Isw, providing not reduced to scalar: (see 12e in marking instructions)
		5	
(ii)	$\mathbf{v}(2.5) = 4\mathbf{i} - 5\mathbf{j}$ Angle is (90+) arctan $\frac{5}{4}$ = 141.34019 so 141° (3 s. f.)	B1 M1 A1 3	FT their v Award for arctan attempted oe. FT their values. Allow argument to be ± (their i cpt)/(their j cpt) or ± (their j cpt)/(their i cpt). Allow this mark if bearing of position vector attempted. cao
		8	

5		mark	notes
(i)	$ \begin{pmatrix} -1\\14\\-8 \end{pmatrix} + \begin{pmatrix} 3\\-9\\10 \end{pmatrix} + \mathbf{F} = 4 \begin{pmatrix} -1\\2\\4 \end{pmatrix} $	M1	N2L. Allow sign errors in applying N2L. Do not condone $\mathbf{F} = mg\mathbf{a}$. Allow one given force omitted.
		M1	Attempt to add $\begin{pmatrix} -1\\14\\-8 \end{pmatrix}$ and $\begin{pmatrix} 3\\-9\\10 \end{pmatrix}$
	$\mathbf{F} = \begin{pmatrix} -6\\3\\14 \end{pmatrix}$	A1 A1	Two components correct cao
(ii)	$\mathbf{v} = \begin{pmatrix} -3 \\ 3 \\ 6 \end{pmatrix} + 3 \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -6 \\ 9 \\ 18 \end{pmatrix} \text{ so } \begin{pmatrix} -6 \\ 9 \\ 18 \end{pmatrix} \text{ m s}^{-1}.$ speed is $\sqrt{(-6)^2 + 9^2 + 18^2} = 21 \text{ m s}^{-1}.$	M1 A1 M1 F1	 v = u + ta with given u and a. Could go via s. If integration used, require arbitrary constant (need not be evaluated) cao isw Allow -6² even if interpreted as - 36. Only FT their v. FT their v only. [Award M1 F1 for 21 seen WWW]
		8	

		mark	comment	sub
6(i)				
	$\mathbf{v} = \mathbf{i} + (3 - 2t)\mathbf{j}$	M1	Differentiating r. Allow 1 error. Could use const accn.	
		A1		
	$\mathbf{v}(4) = \mathbf{i} - 5\mathbf{j}$	F1	Do not award if $\sqrt{26}$ is given as vel (accept if v given and <i>v</i> given as well called speed or magnitude).	
				3
(ii)				
	a = - 2 j	B1	Diff v. FT their v. Award if – 2j seen & isw.	
	Using N2L F = $1.5 \times (-2j)$	M1	Award for $1.5 \times (\pm \text{ their a } \text{ or } a)$ seen.	
	so -3 j N	A1	cao Do not award if final answer is not correct. [Award M1 A1 for -3j WW]	
				3
(iii)				
	$x = 2 + t$ and $y = 3t - t^2$	B1	Must have both but may be implied.	
	Substitute $t = x - 2$			
	SO $y = 3(x-2) - (x-2)^2$	B1	cao. isw. Must see the form $y = \dots$	
	[=(x-2)(5-x)]			
				2
		8		

7		mark	comment	sub
		mark	comment	Sub
			Penalise spurious notation by 1 mark at most once in paper	
(i)	$\mathbf{F} = 5 \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \end{pmatrix} \text{ so } \begin{pmatrix} -5 \\ 10 \end{pmatrix} \mathbf{N}$	M1	Use of N2L in vector form	
i		A1	Ignore units.	
			[Award 2 for answer seen]	
			[SC1 for $\sqrt{125}$ or equiv seen]	
				2
<i>(</i> 11)				
(ii)	$\mathbf{s} = \begin{pmatrix} -2\\3 \end{pmatrix} + 4 \begin{pmatrix} 4\\5 \end{pmatrix} + \frac{1}{2} \times 4^2 \times \begin{pmatrix} -1\\2 \end{pmatrix}$	M1	Use of $\mathbf{s} = t\mathbf{u} + 0.5t^2\mathbf{a}$ or integration of \mathbf{a} . Allow \mathbf{s}_0	
		A1	omitted. If integrated need to consider \mathbf{v} when $t = 0$ Correctly evaluated; accept \mathbf{s}_0 omitted.	
	$\mathbf{s} = \begin{pmatrix} 6 \\ 39 \end{pmatrix}$ so $\begin{pmatrix} 6 \\ 39 \end{pmatrix}$ m	B1	Correctly adding s ₀ to a vector (FT). Ignore units.	
	(39) (39)			
			$[NB \binom{8}{36}]$ seen scores M1 A1]	
				3
		5		